
NEURO-EVOLUTION IN PAST, PRESENT AND

FUTURE VIDEO GAMES

Dom Sleightholme, 10574310, University of Plymouth

Abstract:
Abstract - This paper reviews the research on Neuro-Evolution and how this algorithm is applied to

video games in the past, present, and future. It provides research on the origin of artificial intelligence

and how this form of intelligence has manifested into our technology and advanced over the years.

The paper describes the comparisons made between the artificial and biological neural network and

how we can compare the process of human evolution to NE evolution using tests and research to

support my argument. It discusses the algorithm NEAT (Neuro Evolution of Augmented

Technologies) and how this has been applied to general game playing.

I discuss how NE is applied to general video games using neural networks and their two main

contrasting applications: Regression and Classification, it analyses how NE is applied to three

different examples of video games, each using NE in different ways to complete certain tasks or

gather information for experiment purposes. Five experiments were conducted to analysis how an AI

agent is used in the game, Space Invaders. Each experiment used different values to investigate how

the controller will perform in the game. After conducting these experiments, the results were analysed

to review how the controller is performed in the different experiments and how this implementation of

AI can be taken further using other applications.

Introduction:

1.1 - Technology Overview:
Artificial Intelligence, also known as AI, what is it and how does it affect the human civilisation?

There have been many definitions of AI, an early one being, “the ability of machines to understand,

think, and learn in a similar way to human beings, indicating the possibility of using computers to

simulate human intelligence.” (Pan, 2016). The

term artificial intelligence was first coined by

John McCarthy in 1956 when he held the first

academic conference on the subject (Smith,

2006). The concept of artificial intelligence

stretched back to second world war where British

computer scientist Alan Turing worked to crack

the ‘Enigma’ code which the German forces used

to communicate during the war, Alan Turing and

his team created the Bombe machine which used

machine learning to decipher Enigma’s

messages. Over the years artificial

intelligence has advanced with new

technology to mimic human intelligence and

has increased learning of how to respond to

certain actions.

Figure 1: Image above displays the difference between biological

neural network (top diagram) and an artificial neural network (bottom

diagram) (Sharma, 2017)

In this paper we will be focussing on a

form of artificial intelligence known as

Neuro-evolution (NE). This form of

artificial intelligence is a machine

learning technique that takes

inspiration from the biological nervous

systems. Compared to other AI

techniques, neuro-evolution is used to

create artificial neural networks

(ANN), parameters, topologies and

rules which determine how the

technique is used in computing. Neural

networks (NN) can be described as

either a network or circuit of neurons, today we could describe neural networks as an artificial neural

network, comprised of artificial neurons or nodes, One of the characteristics of neural networks is the

type of transfer function that is used by the neuron within the network (Hoekstra, 2011). The human

brain can be described as a biological neural network—an interconnected web of neurons

transmitting elaborate patterns of electrical signals (Shiffman, 2012), following on from this,

in the paper ‘A Logical Calculus of Ideas Immanent in Nervous Activity” the writers describe

the concept of a neuron as “A logical calculus of ideas imminent in nervous activity”.

Further expanding on neural networks, a perceptron was first introduced in the late 1950’s by Frank

Rosenblatt, but what is this type of neural network? This type of neural network is an algorithm which

is used for supervised learning of binary classifiers, the binary classifier is implemented to determine

whether an input belongs to a specific class. This single perceptron has only one node but works

nearly identically to multi-layered perceptron (MLP). A perceptron is made up of four parts: Input

Values or a single input layer, weight and bias, net sum and finally activation function. This neural

network works like a multi-layered perceptron, all the inputs are accumulated and then multiplied by

their weights, add all the multiplied values together defined as the weighted sum and finally apply this

weighted sum to the correct activation function. A multi-layered perceptron is more than the single

perceptron network, the multilayer perceptron is the hello world of deep learning: a good place to start

when you are learning about deep learning (Nicholson, 2020). MLP can typically use two activation

functions, this is because the activation function is continuous and differentiable, the two functions

are: Sigmoid function and the Hyperbolic Tangent (tanh) function. When using this neural network

there are two common techniques to help divide the data set into two: the training set which is the

set where the MLP will be trained, and the testing set which is used to test the MLP’s trained

performance on a similar set of data which has not been used.

NE is a promising approach to solving reinforcement learning problems for several reasons (Stanley

& Miikkulainen, 2002): NE simplicity of design and structure, neuro-evolution has such a

broad availability that this form of artificial intelligence can be used for supervised,

unsupervised and reinforcement learning tasks (Sebastian Risi, 2014). Neuro-evolution algorithms

have been around since the early 1990’s where the algorithms implemented had weights that

were represented using bit string and this type of algorithm also had a fixed topology. These

types of neuro-evolution algorithms are often called conventional neuro-evolution (CNE) methods

because these methods were the first successful attempts at neuro-evolution (Hoekstra, 2011). One of

the most common uses of Neuro-evolution was the Neuro Evolution of Augmenting Topologies also

known as NEAT, developed by Ken Stanley in 2002. This type of NE was a genetic algorithm that

Figure 2: Perceptron. (Sharma, 2017)

was used for generation of evolving artificial neural networks, when implementing this algorithm on

basic tasks, the NEAT algorithm has

been known to often be quicker and

more effective than such other

techniques like neuro-evolutionary

techniques or also reinforcement learning

methods. Over the years, the concept of

Neuro-evolution has advanced with new

technology and increased demand due to

its simplicity of design one might argue

that it could go beyond this relatively

narrow formulation of reinforcement

learning (Sebastian Risi, 2014).

NE is mostly used in evolutionary robotics and general game playing, for example, neuro-evolution

can be used for competitive car controllers in racing games like The Open Car Racing Simulator, also

known as TORCS, NE can be used in evolutionary robotics to develop neural behaviour control

systems which come closer to the abilities of biological nervous systems, a new class of challenges

emerges (Pasemann, 2012), we will further analysis how NE is used in games in the next section.

1.2 - Related Work:
With the increase of demand for computer games over the years, the advancement of computer games

technology has come a long way from the early days of Pong which was released in 1972, in our

modern-day society we now have games that are commonly huge open world adventure or intense

multiplayer matches that can hold up to one hundred players in one match. Current games today are

not just fancy graphics, artificial intelligence has played a huge role in the advance of computer games

over the years, neuro-evolution has been a part of this advancement in technology. Neuro-evolution

has been used in the computer games industry for years from games such as Mario, the 2D

platformer where you play as a plumber trying to save the princess, or even games like Quake

II, a fast-paced first-person shooter or even NERO (NeuroEvolving Robotic Operatives),

where you train robots to fight another team of virtual robots.

When applying neural networks to

games, there are two main areas of

application: Control and Decision

making, these contrasting areas

play a key part to neural network

application to video games. The

control area uses a regression, this

area of neural networks can predict

an output variable known as a

control signal from receiving a

collection of inputs, the inputs used

can be categorical or numeric types, but when using regression this process requires using a numeric

dependent type to complete the process, If the output variable is a categorical variable (or binary) the

ANN will function as a classifier (Boehmke, 2018). This area of NN can be used to steer a car in a

game like TORCS, the vehicles have a set of inputs like speed or the heading factor which will be

Figure 3: The input is what the brain senses. In this case the four neighbouring

wall's state, whether it is a wall (1) or a free space (0) where it can go next. The

output is what comes out of this neural network. (VBStudio.HU, 2019)

Figure 4: The diagram displays how neural networks are using games such as TORCS

(Kyung-JoongKim, 2012)

initialized in the input layer, the inputs will be used to calculate the weighted sum of the inputs used,

the weighted sum will add the bias and finally execute an activation function to get the final outputs

which will be used by the vehicles to move or throttle, that’s why it is linked with control when

discussing the two main application areas NN uses for games.

The decision-making area uses classification, an algorithm where it is used to predict what category

data belongs to by using a given set of inputs, this type of algorithm is used primarily for data science,

such as when biologists categorize plants, animals, and other lifeforms into different taxonomies

(DataRobot, 2020). The decision-making area is used in video games for non-player characters (NPC)

whether it is enemies or friendly characters, they will all use classification to compute movement and

other actions in game. In some video games today, we have experienced bugs where the NPCs

perform completely against their set function, this is due to classification requiring a deep

understanding of recent advances in

machine learning to implement and while

the expert AI players it produces can be

challenging, they may not necessarily be

fun (Digital Creativity Labs, 2020). This

area of application will use neural

networks, similar to regression where a set

of inputs will be implemented, calculating

together in the hidden layer and then output

the calculated sum to use, an example using

neural networks for decision making is

where the NN uses attacking attributes and

health as the input and then the calculated

sum is whether to attack, flee or defend.

NE is known to have such a broad applicability due to its simplicity of design we can apply NE in

several ways when applying this algorithm into the games industry, NE enables new kinds of

technology and design into video games, evolutionary computation here provides unique affordances

for game design, and some designs rely specifically on NeuroEvolution (Sebastian Risi, 2014). NE

can be applied in video games in several ways: TORCS, the car racing simulator uses NE for high-

performing controllers used by computer controlled players, NE was used in the commercial game

Creatures, the game allows players to breed and raise virtual pets, these virtual pets were controlled

by ANN which allowed the pets to learn new behaviours from the player. As seen in current games

the opportunities available from applying NE to video games are infinite.

For this research we will be focusing on Super Mario Bros, this platform game was released in 1985

from the game studio Nintendo who developed and published the title, the title was released for the

Famicom in Japan and released for NES in North America and Europe. Super Mario Bros is still one

of the best side-scrolling platformers (Mott, 2013). Mario games have been known to be easy

sandboxes to play with interesting ideas when Japanese fans used the games sound effects to recreate

the famous hit “Don’t Stop Me Now” released by Queen, Youtuber SethBling developed a program

called “MarI/O”, the program was an AI controller using neural networks to learn how to play the

video game. The neural networks adapted the movement of Mario using a fitness score, this type of

score was controlled by every single movement Mario made, the higher the fitness score, the higher

Mario travelled in the level. When Mario died, the program will restart the level and will add a

Figure 5: Neural Networks in MarI/0, (GAME ANIM, 2015)

mutation to the AI, this mutation can be anything like making Mario jump or do a certain action at a

certain point of the level. The MarI/O program will look for the highest fitness scores and breed them

together including adding random mutations, this process was called ‘generations’ and is very similar

to human evolution.

Quake II is a first-person shooter video

game which was developed by id Software

and published by Activison, this game was

released in December 1997 and was not a

direct sequel to its previous successor,

Quake. The fast-paced shooter was later

re-released in June 2019 as remastered

version of the original, incorporating the

RTX graphics recently released by Nvidia.

Quake is a good example of where neural

networks have been applied in first-person

shooters (FPS). Matt Parker and Bobby D

Bryant used Quake II to apply NE differently to games such as NERO, they experimented using a

combination of backpropagation and NE to train a neural network visual controller for agents in the

game. Backpropagation is a well-known algorithm used for supervised learning of artificial learning

using gradient descent; this algorithm is used by calculating the gradient of the error function using

the neural network’s weights.

In the experiment they used an empty room which was dimly lit using varying shadows, this

experiment included a single enemy, this setup was more realistic due to the design being like the

actual game. In experiments previously to this, Parker and Bryant used the same setup but used a less

visually complex map, using clear textures and no shadows to affect lighting. The experiment was

used to make a comparison between using NE and using NE combined with backpropagation for

Lamarckian adaption, the agent was spawned into the setup and was tasked to kill as many enemy

bots as possible. The experiment results concluded that the tests that learned using backpropagation

for Lamarckian NeuroEvolution were much more successful than the test that used only

NeuroEvolution (Bryant, 2009), the controller used for both tests used a neural network with a visual

retina input.

Figure 6: Screenshot of Quake II (DigitalFoundry, 2017)

Figure 7: Experiments used by Parker and Bryant to compare NE and NE combined with Backpropagation for Lamarckian Approach (Bryant,

2009)

NERO is a unique take on NE, NERO was a result of an academic research project in

artificial intelligence, this project was based on the rtNEAT (real-time NeuroEvolution of

Augmenting Topologies), this type of method allows agents to adapt and improve during the

game, in NERO this method is used where the player trains a team of robots through a series

of customized tasks for combat against another team of robots but this time is controlled

virtually. There are several modes to play solo or against friends but still following the same

concept, for every time you are doing well, you are rewarded by evolution potential. Your agents

evolve to perform better in what they are trained to do (M.Zinoune, 2012). As you improve the agents

using training methods, the game will be advanced and complicated compared to previous training

making the player think out advanced

strategies to control the battlefield. As training

of the robots continue to advance so will the

enemy agents and battlefield, after fighting off

moving turrets and manoeuvring around walls

and harsh environments, the robots will be

deployed to battle other user’s trained teams

which are using their own training methods.

The developers of NERO have now moved

away from the program and are currently

developing OpenNERO, based on the previous

title this project aims to be used more for

research and education in artificial intelligence

rather than being a strategy video game.

Experiments and results:

For further understanding the technology of NeuroEvolution, a set of experiments were conducted to

evaluate the evolution of an MLP Controller acting as an agent in the popular game, Space Invaders.

To adapt the controller to compute in the application and to complete the experiments specified

previously, modifications were made to the MLP controller: to compute with the input being the

representation of the game grid using 1-to-N coding, modified the MLP to compute with the

application using the number of hidden nodes, modified the output selection of the MLP using fitness

measure, mutation rates, number of generations and the population size. In Figure 11 there are the

modified values in the application with a short description of how they compute and range they will

use in the experiments. For the research into NeuroEvolution, five experiments were conducted using

Figure 8: Screenshot of NERO in action (Willis, 2006)

Figure 10: Screenshot from the Space Invaders game being used

different values for the MLP controller and viewport dimensions in each experiment, each experiment

will be tested in three different levels, for variation in results.

Setting Name Range Parameter Function

Viewport Dimensions

viewWidth 5- 10 This parameter decides the width of the grid

used as the input for the MLP Controller, the

width will combine with the grid height and the

numberCategories in the numCells calculation.

viewHeight 5 - 10 This parameter decides the height of the grid

used as the input for the MLP Controller, the

grid follows the player. This parameter is used

in the numCells calculation.

numberCategories 4 This parameter is used for the different cell

options in the application, for example, Alien,

Missile, Obstacle, Empty, Left Window and

Right Window.

numCells 144 - 324 numCells is the calculation result of

(ViewWidth * numberCategories) *

viewHeight, this parameter is used in 1-to-N

coding.

MLP Topology

numberInputNodes 144 - 324 This setting provides information from the

viewport dimensions to be calculate in the

hidden layer of the MLP Controller.

numberHiddenNodes 10 - 200 numberHiddenNodes takes in the input and

calculates an output using an activation

function.

numberOutputNodes 5 - 100 The values of the numberOutputNodes are the

inputs calculated with the hidden layer, the

outputs are used by the agent in the game.

Activation Function

Sigmoid Function N/A Sigmoid is the activation function used in the

MLP Controller, this function limits the output

to have a range between 0 and 1.

Evolution Parameters

populationSize 20 This parameter uses mutationMagnitude and

mutationProbability to calculate a value used by

the MLP controller.

numberGenerations 10 The MLP controller will evolve the same

amount of times as the value of this parameter.

numberElite 5 - 10 This parameter is used when removing this

parameters value from population size to

calculate a value used in the Controller.

mutationMagnitude 10 - 100 This parameter is used in the MLP Controller to

calculate movement alongside

mutationProbability.

mutationProbability 10 - 100 This parameter is used in the MLP Controller to

calculate movement alongside

mutationMagnitude.

The activation used in our MLP Controller for our experiments is known as the Sigmoid function, this

activation function, known to have an “S”-shaped curve, also known as a sigmoid curve, the Sigmoid

function is known to be used when using 1-to-N coding. The function limits the output results of the

MLP controller to either 0 or 1, these are used in the 1-to-N coding representation in which the

controller is used. For the output representation of my controller, I choose to use 1-to-N coding, this

Figure 11: Parameters Used Table

representation uses the Sigmoid activation outputs to then be further used for the controller’s actions.

When modifying the MLP Controller, there was the option to modify the number of categories used in

the controller, these categories are used in the numCells calculation for the grid of the AI agent. When

modifying this parameter, the controller used four categories in the MLP Controllers, with these

categories in place the agent was able to recognise the grid boundaries, aliens, obstacles, and empty

tiles. The final modifications completed before experiments was modifying the scoring of the game,

there was a lot of creative freedom here and alternative concepts of scoring were investigated when

conducting the experiments.

Experiment One
For the first experiment to investigate

the implementation of an MLP

controller acting as an agent in the

application known as Space Invaders,

the controller was assigned low values

to each of the parameters including the

viewport dimensions. The decision for

low values for this experiment was to

compare the MLP controller using low

values for all parameters including

viewport dimensions compared to the

MLP controller, using the same

parameters except viewport dimensions

where there will be an increase of value

for the viewport values in experiment

two. The results presented in Figure 12

showed a steady increase for fitness

measure until generation four where the value started to decrease a small amount each generation

during the evolution. Population stats shown in Figure 12 increased and decreased multiple times

during the evolution process. When the MLP controller was presented to the three chosen levels for

next stage of the experiment, the controller was successful in completing all levels used in the

experiment, the most successful level of the experiment being level two, the level was completed in

388 timesteps and the overall score for the controller was 45. Overall, this was a successful

experiment to show how the controller would compute using the lowest values for all parameters

including the parameters for the viewport.

22.25 23.675
26.95

37.5 37.925
32.1

41.3

33.6 35.975
42

45 44.5

55 54.5 55.5 54.5 53.5 53

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

GENERATIONS

EXPERIMENT ONE

Population Fitness Measure

Figure 12: Experiment One

Experiment Two
This experiment will be used to

compare the performance of the MLP

controller using low values for all

parameters except the viewport which

will use high values, this experiment

will be used to compare the difference

in results when the MLP controller is

using a high value viewport compared

to a low value viewport. The results

presented in Figure 13 showed a steady

increase in value for the fitness

measure except in generation five, in

this generation the value increased by a

large amount but in the continuing

generations the value resumed the

steady increase. After reviewing the

population stats for this experiment, the

value did not increase by a large

amount but had a few high values increases in generations three and six. When the MLP controller

was presented to the three chosen levels for next stage of the experiment, the controller was successful

in completing all levels used in the experiment, the most successful level of the experiment being

level three, the level was completed in 361 timesteps and the controller’s overall score was 41.

Experiment Three
This experiment will be used to

compare the performance of the MLP

controller using high values for the

controller’s parameters and lower

values for viewport, this experiment

will be used to compare the difference

in results when the MLP controller is

using a low value viewport compared to

a high value viewport. The results

presented in Figure 14 showed a steady

increase in population stats, at

generation eight the value increased by

a high amount but after that continued

at a steady amount. The fitness measure

increased at generation four but then

jumped in value, after this drop the

fitness measure began to increase again

until the generation where it decreased

in value again. in value for population stats compared to fitness measure which continued to decrease

slightly. When the MLP controller was presented to the three chosen levels for next stage of the

experiment, the controller was successful in every level used except level one where the MLP

controller was destroyed by the enemy AI, the most successful level was the level three, this level was

completed in 434 timesteps and the overall score for the controller was 42. Overall, this was a

10.85

18.65
22.22 22.72 22.75

33.57532.175
36.8 39.12541.5 43

46

58

44

53
57 57.5

47

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

GENERATIONS

EXPERIMENT THREE

Population Fitness Measure

29.75 31.5

38.825

32.15 32.9

40.9
36.125

39.1
36.025

45.5
48.5

51.5 50.5 49

56.5

49.5
54

51

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

GENERATIONS

EXPERIMENT TWO

Population Fitness Measure

Figure 13: Experiment Two

Figure 14: Experiment Four

successful experiment to show how the controller would compute using the highest values for all

parameters except the viewport which used low values.

Experiment Four
This experiment will be used to

compare the performance of the MLP

controller using high values for the

controller’s parameters and viewport

dimensions compared to the previous,

experiment three where that evolved

controller used high values for the

parameters except the viewport which

used low values for the dimensions. The

results presented in Figure 15 showed a

steady increase in value for both the

population stats and the fitness measure,

there was a slight drop at generation

eight for both values but there was an

increase in value for population stats

compared to fitness measure which

continued to decrease slightly. When

the MLP controller was presented to the

three chosen levels for next stage of the experiment, the controller was successful in completing each

level without being destroyed by the enemy AI, the most successful level being level one where the

amount of timesteps the level was completed in was 430 and the controllers overall score was 49.

Overall, this was a successful experiment to show how the controller would compute using the highest

values for all parameters including the viewport.

Experiment Five
For the fifth and final experiment, the

controller will be assigning the average

value between the high and low values

previously used as values for this

experiment. The decision to use the

average of values of the high and low

values used previously was to analysis

how the MLP controller would function

using the average values compared to

the lowest and highest values used

previously. The results presented in

Figure 16 showed a steady increase of

population stats value each generation

compared to the fitness measure where

this value had a slight drop in the

middle and end of the evolution

process. When the MLP controller was

presented to the three chosen levels for next stage of the experiment, the controller was successful in

completing each level without being destroyed by the enemy AI, the most successful level being level

9.575

20.025 21

30.825 32.05 34.1 35.625
32.275 34.537.5

43 43

53.5 53 51

59 56 53

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

GENERATIONS

EXPERIMENT FIVE

Population Fitness Measure

8.6

18.2
24.65 25.325

32.1
37.725

42.6
36.85

40.739.5
46 45 46.5 48.5

53
59

55.5
52.5

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

GENERATIONS

EXPERIMENT FOUR

Population Fitness Measure

Figure 15: Experiment Four

Figure 16: Experiment Five

three where the amount of timesteps the level was completed in was 361 and the controllers score was

41. Overall, this was a successful experiment to show how the controller would compute using the

average values of the previous experiments.

Discussion:
All results obtained were successful in completing the evolution of generations and obtaining data on

the population stats and fitness measure for all generations, with these experiments completed

successfully there is a clear indication that after each generation when evolving, all experiments

increased value for both measures when comparing their values at the start and end of the evolution

process. After completing the five experiments, there were not enough values for each of the

experiments to determine positive or negative changes when analysing the results for comparisons

with the experiments conducted, due to the lack of results to use for analysis, the experiments were

conducted again using ten generations instead of the previous set which used only five generations in

each evolution. One of the key factors from analysing all the levels completed for each experiment

was that three out of the five experiments conducted completed level three compared to the rest of the

levels used in the experiments, these experiments being; experiment two, three and five. After

reviewing the three experiments which all had level three as their best score, there was not a common

factor as each experiment used different values for the controller and the viewport.

After analysing the results there was one unusual factor which occurred in experiment three, this

factor being that the controller failed to complete level one after the evolution process, this factor was

unusual because in all the other experiments the controllers were able to complete the level and defeat

the enemy AI. From analysing the unusual result further, experiment three used high values for all

parameters except the viewport in which low values were used, the result of this could be the reason

for level failure, the high values for the MLP parameters could not compute with the small grid size of

the viewport. After further analysing the results the lowest average timesteps out of all experiments

was experiment two, this experiment used low values for all parameters except viewport which used

high value parameters. After further analysis, the fitness measure was at its highest value in

experiments five and one with a value of 53. The population stats were highest in value in experiment

four with a value of 40.7, experiment three was close behind with a value of 39.125

After analysing the results, both the population stats and the fitness measure for experiment two did

not increase in value in comparison to the rest of the experiments after the evolution process, this

experiment in particular was the experiment where low values were used for all parameters except the

viewport in which high values were used, this factor leads to the idea of the MLP controller having a

large amount of the viewport accessible to use but low values in input, the controller was not

successful in using the viewport to its advantage. After further analysis, experiment four seemed to

increase in both data measures the highest compared to the other experiments which were conducted,

both data measures increased in high value after each generation except generation eight, this

generation was where both data measures were at their highest, after generation eight, the data

measures began to decrease by a low value but managed to still have a good value for each data

measure, this experiment used high values for all parameters for MLP controller except the viewport

which used low values. Experiment five was close to be the most successful evolution compared to

experiment four, this experiment used the average values of the highest and lowest values used in the

previous experiments so far.

After reviewing the results and finding the experiments four and five to have the best results after the

evolution, the experiments showed that the higher the parameter values are for the MLP controller, the

greater the results. The viewport dimensions in these experiments did not use the highest value

compared to the MLP controller parameters which used the highest values and the average values of

the previous highest and lowest values used. One of MLP’s weaknesses is setting parameters as this

process is known more as an art rather than a science, this method of setting parameter values was

used highly during all the experiments. After all the experiments were conducted and reviewing their

results, the findings prove that using the NeuroEvolution technique for an AI agent in Space Invaders

is a good example of AI being applied to video games. The idea of AI being applied to video games in

the way this agent has been in the Space Invaders application has been used for several other games,

these games being; Chess, Pong and several other games to conduct how AI can be used to play a

video game. Overall NeuroEvolution has shown how an AI agent can be applied to a video game and

outperform a biological player using generation evolution, the process of picking the fittest of each

generation, breeding them together and adding random mutations very closely matches the process of

biological evolution which took single cell organisms and produced intelligent humans (Brockman,

2016), that is the power of neuro-evolution.

References
Boehmke, B., 2018. UC Business Analytics R Programming Guide. [Online]

Available at: http://uc-r.github.io/ann_regression

[Accessed 15th April 2020].

Brockman, J., 2016. Life: The Leading Edge of Evolutionary Biology, Genetics, Anthropology, and

Environmental Science. 1st ed. New York: Harper Perennial.

Bryant, M. P. a. B. D., 2009. Lamarckian Neuroevolution for Visual Control in the Quake II. Congress

on Evolutionary Computation, p. 2630–2637.

DataRobot, 2020. Classification. [Online]

Available at: datarobot.com/wiki/classification/

[Accessed 15th April 2020].

Digital Creativity Labs, 2020. Decision Making AI for Games. [Online]

Available at: https://www.digitalcreativity.ac.uk/projects/decision-making-ai-games

[Accessed 20th April 2020].

DigitalFoundry, 2017. DF Retro: Quake 2. [Online]

Available at: https://www.digitalfoundry.net/2017-05-14-df-retro-quake-2

[Accessed 19th April 2020].

GAME ANIM, 2015. ARTIFICIAL INTELLIGENCE LEARNS MARIO LEVEL IN JUST 34 ATTEMPTS. [Online]

Available at: https://www.gameanim.com/2015/06/19/artificial-intelligence-learns-mario-level-in-

just-34-attempts-2/

[Accessed 18th April 2020].

Hoekstra, V., 2011. An overview of neuroevolution techniques. Amsterdam: s.n.

Kyung-JoongKim, J.-H. S. J.-G. P. J. C. N., 2012. Neurocomputing. Generalization of TORCS car racing

controllers with artificial neural networks and linear regression analysis, Volume 88, pp. 87-99.

M.Zinoune, 2012. Neuro-Evolving Robotic Operatives | Friday Game. [Online]

Available at: https://www.unixmen.com/nero-evolving-robotic-operatives-friday-game/

[Accessed 17th April 2020].

Mott, T., 2013. 1001 Video Games You Must Play Before You Die Paperback. 1st ed. London: Cassell.

Nicholson, C., 2020. A Beginner's Guide to Multilayer Perceptrons (MLP). [Online]

Available at: https://pathmind.com/wiki/multilayer-perceptron

[Accessed 08 April 2020].

Pan, Y., 2016. Heading toward Artificial Intelligence 2.0. Engineering, 2(4), pp. 409-413.

Pasemann, C. R., 2012. An Interactively Constrained Neuro-Evolution Approach for Behavior Control

of Complex Robots. In: Heidelberg, ed. Variants of Evolutionary Algorithms for Real-World

Applications. Berlin: Springer, pp. 305-341.

Sebastian Risi, J. T., 2014. State of the Art and Open Challenges. Neuroevolution in Games:.

Sharma, A., 2017. What is the differences between artificial neural network (computer science) and

biological neural network?. [Online]

Available at: https://www.quora.com/What-is-the-differences-between-artificial-neural-network-

computer-science-and-biological-neural-network

[Accessed 13 March 2020].

Sharma, S., 2017. What the Hell is Perceptron?. [Online]

Available at: https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

[Accessed 28 March 2020].

Shiffman, D., 2012. The Nature of Code. California: Free Software Foundation.

Smith, C., 2006. The History of Artificial Intelligence. [Online]

Available at: https://courses.cs.washington.edu/courses/csep590/06au/projects/history-ai.pdf

Stanley, K. O. & Miikkulainen, R., 2002. Evolving Neural Networks through. The MIT Press Journals,

10(2), pp. 99-127.

VBStudio.HU, 2019. Growing an AI with NEAT. [Online]

Available at: https://vbstudio.hu/en/blog/20190317-Growing-an-AI-with-NEAT

[Accessed 28 March 2020].

Willis, N., 2006. AI versus AI: N.E.R.O. on Linux. [Online]

Available at: https://www.linux.com/news/ai-versus-ai-nero-linux/

[Accessed 20th April 2020].

Appendix:

Experiment Results:

Key:

Red = The Controller failed to complete the level

Yellow = The Controllers best score compared to the other levels used in the experiment.

Experiment

Number

Fitness

Measure

Population

Stats

Level 1 Level 2 Level 3 Best

1

42

45

44.5

55

54.5

55.5

54.5

53.5

53

22.25

23.675

26.95

37.5

37.925

32.1

41.3

33.6

35.975

597

64 388

45

449 42 388 45

2

45.5

48.5

51.5

50.5

49

56.5

49.5

54

51

29.75

31.5

38.825

32.15

32.9

40.9

36.125

39.1

36.025

409 59 608 51 361 41 361 41

3

41.5

43

46

58

44

53

57

57.5

47

10.85

18.65

22.22

22.72

22.75

33.375

31.175

36.8

39.125

855 53 633 49 434 42 434 42

4

39.5

46

45

46.5

48.5

53

59

55.5

52.5

8.6

18.2

24.65

25.325

32.1

37.725

42.6

36.85

40.7

430 49

837 51

835 55

430 49

5

37.5

43

43

53.5

53

51

59

56

53

9.575

20.025

21

30.825

32.05

34.1

35.625

32.275

34.5

565 61 555 48 361 41

361 41

