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Abstract: 
Abstract - This paper reviews the research on Neuro-Evolution and how this algorithm is applied to 

video games in the past, present, and future. It provides research on the origin of artificial intelligence 

and how this form of intelligence has manifested into our technology and advanced over the years. 

The paper describes the comparisons made between the artificial and biological neural network and 

how we can compare the process of human evolution to NE evolution using tests and research to 

support my argument. It discusses the algorithm NEAT (Neuro Evolution of Augmented 

Technologies) and how this has been applied to general game playing.  

I discuss how NE is applied to general video games using neural networks and their two main 

contrasting applications: Regression and Classification, it analyses how NE is applied to three 

different examples of video games, each using NE in different ways to complete certain tasks or 

gather information for experiment purposes. Five experiments were conducted to analysis how an AI 

agent is used in the game, Space Invaders. Each experiment used different values to investigate how 

the controller will perform in the game. After conducting these experiments, the results were analysed 

to review how the controller is performed in the different experiments and how this implementation of 

AI can be taken further using other applications.  

 

Introduction: 

1.1 - Technology Overview: 
Artificial Intelligence, also known as AI, what is it and how does it affect the human civilisation? 

There have been many definitions of AI, an early one being, “the ability of machines to understand, 

think, and learn in a similar way to human beings, indicating the possibility of using computers to 

simulate human intelligence.” (Pan, 2016). The 

term artificial intelligence was first coined by 

John McCarthy in 1956 when he held the first 

academic conference on the subject (Smith, 

2006). The concept of artificial intelligence 

stretched back to second world war where British 

computer scientist Alan Turing worked to crack 

the ‘Enigma’ code which the German forces used 

to communicate during the war, Alan Turing and 

his team created the Bombe machine which used 

machine learning to decipher Enigma’s 

messages. Over the years artificial 

intelligence has advanced with new 

technology to mimic human intelligence and 

has increased learning of how to respond to 

certain actions. 

 

Figure 1: Image above displays the difference between biological 

neural network (top diagram) and an artificial neural network (bottom 

diagram) (Sharma, 2017) 



In this paper we will be focussing on a 

form of artificial intelligence known as 

Neuro-evolution (NE). This form of 

artificial intelligence is a machine 

learning technique that takes 

inspiration from the biological nervous 

systems. Compared to other AI 

techniques, neuro-evolution is used to 

create artificial neural networks 

(ANN), parameters, topologies and 

rules which determine how the 

technique is used in computing. Neural 

networks (NN) can be described as 

either a network or circuit of neurons, today we could describe neural networks as an artificial neural 

network, comprised of artificial neurons or nodes, One of the characteristics of neural networks is the 

type of transfer function that is used by the neuron within the network (Hoekstra, 2011). The human 

brain can be described as a biological neural network—an interconnected web of neurons 

transmitting elaborate patterns of electrical signals (Shiffman, 2012), following on from this, 

in the paper ‘A Logical Calculus of Ideas Immanent in Nervous Activity” the writers describe 

the concept of a neuron as “A logical calculus of ideas imminent in nervous activity”.  

 

Further expanding on neural networks, a perceptron was first introduced in the late 1950’s by Frank 

Rosenblatt, but what is this type of neural network? This type of neural network is an algorithm which 

is used for supervised learning of binary classifiers, the binary classifier is implemented to determine 

whether an input belongs to a specific class. This single perceptron has only one node but works 

nearly identically to multi-layered perceptron (MLP). A perceptron is made up of four parts: Input 

Values or a single input layer, weight and bias, net sum and finally activation function. This neural 

network works like a multi-layered perceptron, all the inputs are accumulated and then multiplied by 

their weights, add all the multiplied values together defined as the weighted sum and finally apply this 

weighted sum to the correct activation function. A multi-layered perceptron is more than the single 

perceptron network, the multilayer perceptron is the hello world of deep learning: a good place to start 

when you are learning about deep learning (Nicholson, 2020). MLP can typically use two activation 

functions, this is because the activation function is continuous and differentiable, the two functions 

are: Sigmoid function and the Hyperbolic Tangent (tanh) function. When using this neural network 

there are two common techniques to help divide the data set into two: the training set which is the 

set where the MLP will be trained, and the testing set which is used to test the MLP’s trained 

performance on a similar set of data which has not been used. 

 

NE is a promising approach to solving reinforcement learning problems for several reasons (Stanley 

& Miikkulainen, 2002): NE simplicity of design and structure, neuro-evolution has such a 

broad availability that this form of artificial intelligence can be used for supervised, 

unsupervised and reinforcement learning tasks (Sebastian Risi, 2014). Neuro-evolution algorithms 

have been around since the early 1990’s where the algorithms implemented had weights that 

were represented using bit string and this type of algorithm also had a fixed topology. These 

types of neuro-evolution algorithms are often called conventional neuro-evolution (CNE) methods 

because these methods were the first successful attempts at neuro-evolution (Hoekstra, 2011). One of 

the most common uses of Neuro-evolution was the Neuro Evolution of Augmenting Topologies also 

known as NEAT, developed by Ken Stanley in 2002. This type of NE was a genetic algorithm that 

Figure 2: Perceptron. (Sharma, 2017) 



was used for generation of evolving artificial neural networks, when implementing this algorithm on 

basic tasks, the NEAT algorithm has 

been known to often be quicker and 

more effective than such other 

techniques like neuro-evolutionary 

techniques or also reinforcement learning 

methods. Over the years, the concept of 

Neuro-evolution has advanced with new 

technology and increased demand due to 

its simplicity of design one might argue 

that it could go beyond this relatively 

narrow formulation of reinforcement 

learning (Sebastian Risi, 2014). 

 

NE is mostly used in evolutionary robotics and general game playing, for example, neuro-evolution 

can be used for competitive car controllers in racing games like The Open Car Racing Simulator, also 

known as TORCS, NE can be used in evolutionary robotics to develop neural behaviour control 

systems which come closer to the abilities of biological nervous systems, a new class of challenges 

emerges (Pasemann, 2012), we will further analysis how NE is used in games in the next section.  

 

1.2 - Related Work: 
With the increase of demand for computer games over the years, the advancement of computer games 

technology has come a long way from the early days of Pong which was released in 1972, in our 

modern-day society we now have games that are commonly huge open world adventure or intense 

multiplayer matches that can hold up to one hundred players in one match. Current games today are 

not just fancy graphics, artificial intelligence has played a huge role in the advance of computer games 

over the years, neuro-evolution has been a part of this advancement in technology. Neuro-evolution 

has been used in the computer games industry for years from games such as Mario, the 2D 

platformer where you play as a plumber trying to save the princess, or even games like Quake 

II, a fast-paced first-person shooter or even NERO (NeuroEvolving Robotic Operatives), 

where you train robots to fight another team of virtual robots.  

 

When applying neural networks to 

games, there are two main areas of 

application: Control and Decision 

making, these contrasting areas 

play a key part to neural network 

application to video games. The 

control area uses a regression, this 

area of neural networks can predict 

an output variable known as a 

control signal from receiving a 

collection of inputs, the inputs used 

can be categorical or numeric types, but when using regression this process requires using a numeric 

dependent type to complete the process, If the output variable is a categorical variable (or binary) the 

ANN will function as a classifier (Boehmke, 2018). This area of NN can be used to steer a car in a 

game like TORCS, the vehicles have a set of inputs like speed or the heading factor which will be 

Figure 3: The input is what the brain senses. In this case the four neighbouring 

wall's state, whether it is a wall (1) or a free space (0) where it can go next. The 

output is what comes out of this neural network. (VBStudio.HU, 2019) 

Figure 4: The diagram displays how neural networks are using games such as TORCS 

(Kyung-JoongKim, 2012) 



initialized in the input layer, the inputs will be used to calculate the weighted sum of the inputs used, 

the weighted sum will add the bias and finally execute an activation function to get the final outputs 

which will be used by the vehicles to move or throttle, that’s why it is linked with control when 

discussing the two main application areas NN uses for games. 

 

The decision-making area uses classification, an algorithm where it is used to predict what category 

data belongs to by using a given set of inputs, this type of algorithm is used primarily for data science, 

such as when biologists categorize plants, animals, and other lifeforms into different taxonomies 

(DataRobot, 2020). The decision-making area is used in video games for non-player characters (NPC) 

whether it is enemies or friendly characters, they will all use classification to compute movement and 

other actions in game. In some video games today, we have experienced bugs where the NPCs 

perform completely against their set function, this is due to classification requiring a deep 

understanding of recent advances in 

machine learning to implement and while 

the expert AI players it produces can be 

challenging, they may not necessarily be 

fun (Digital Creativity Labs, 2020). This 

area of application will use neural 

networks, similar to regression where a set 

of inputs will be implemented, calculating 

together in the hidden layer and then output 

the calculated sum to use, an example using 

neural networks for decision making is 

where the NN uses attacking attributes and 

health as the input and then the calculated 

sum is whether to attack, flee or defend. 

 

NE is known to have such a broad applicability due to its simplicity of design we can apply NE in 

several ways when applying this algorithm into the games industry, NE enables new kinds of 

technology and design into video games, evolutionary computation here provides unique affordances 

for game design, and some designs rely specifically on NeuroEvolution (Sebastian Risi, 2014). NE 

can be applied in video games in several ways: TORCS, the car racing simulator uses NE for high-

performing controllers used by computer controlled players, NE was used in the commercial game 

Creatures, the game allows players to breed and raise virtual pets, these virtual pets were controlled 

by ANN which allowed the pets to learn new behaviours from the player. As seen in current games 

the opportunities available from applying NE to video games are infinite. 

 

For this research we will be focusing on Super Mario Bros, this platform game was released in 1985 

from the game studio Nintendo who developed and published the title, the title was released for the 

Famicom in Japan and released for NES in North America and Europe. Super Mario Bros is still one 

of the best side-scrolling platformers (Mott, 2013). Mario games have been known to be easy 

sandboxes to play with interesting ideas when Japanese fans used the games sound effects to recreate 

the famous hit “Don’t Stop Me Now” released by Queen, Youtuber SethBling developed a program 

called “MarI/O”, the program was an AI controller using neural networks to learn how to play the 

video game. The neural networks adapted the movement of Mario using a fitness score, this type of 

score was controlled by every single movement Mario made, the higher the fitness score, the higher 

Mario travelled in the level. When Mario died, the program will restart the level and will add a 

Figure 5: Neural Networks in MarI/0, (GAME ANIM, 2015) 



mutation to the AI, this mutation can be anything like making Mario jump or do a certain action at a 

certain point of the level. The MarI/O program will look for the highest fitness scores and breed them 

together including adding random mutations, this process was called ‘generations’ and is very similar 

to human evolution.  

 

Quake II is a first-person shooter video 

game which was developed by id Software 

and published by Activison, this game was 

released in December 1997 and was not a 

direct sequel to its previous successor, 

Quake. The fast-paced shooter was later 

re-released in June 2019 as remastered 

version of the original, incorporating the 

RTX graphics recently released by Nvidia. 

Quake is a good example of where neural 

networks have been applied in first-person 

shooters (FPS). Matt Parker and Bobby D 

Bryant used Quake II to apply NE differently to games such as NERO, they experimented using a 

combination of backpropagation and NE to train a neural network visual controller for agents in the 

game. Backpropagation is a well-known algorithm used for supervised learning of artificial learning 

using gradient descent; this algorithm is used by calculating the gradient of the error function using 

the neural network’s weights.  

 

In the experiment they used an empty room which was dimly lit using varying shadows, this 

experiment included a single enemy, this setup was more realistic due to the design being like the 

actual game. In experiments previously to this, Parker and Bryant used the same setup but used a less 

visually complex map, using clear textures and no shadows to affect lighting. The experiment was 

used to make a comparison between using NE and using NE combined with backpropagation for 

Lamarckian adaption, the agent was spawned into the setup and was tasked to kill as many enemy 

bots as possible. The experiment results concluded that the tests that learned using backpropagation 

for Lamarckian NeuroEvolution were much more successful than the test that used only 

NeuroEvolution (Bryant, 2009), the controller used for both tests used a neural network with a visual 

retina input. 

 

 

Figure 6: Screenshot of Quake II (DigitalFoundry, 2017) 

Figure 7: Experiments used by Parker and Bryant to compare NE and NE combined with Backpropagation for Lamarckian Approach (Bryant, 

2009) 



NERO is a unique take on NE, NERO was a result of an academic research project in 

artificial intelligence, this project was based on the rtNEAT (real-time NeuroEvolution of 

Augmenting Topologies), this type of method allows agents to adapt and improve during the 

game, in NERO this method is used where the player trains a team of robots through a series 

of customized tasks for combat against another team of robots but this time is controlled 

virtually. There are several modes to play solo or against friends but still following the same 

concept, for every time you are doing well, you are rewarded by evolution potential. Your agents 

evolve to perform better in what they are trained to do (M.Zinoune, 2012). As you improve the agents 

using training methods, the game will be advanced and complicated compared to previous training 

making the player think out advanced 

strategies to control the battlefield. As training 

of the robots continue to advance so will the 

enemy agents and battlefield, after fighting off 

moving turrets and manoeuvring around walls 

and harsh environments, the robots will be 

deployed to battle other user’s trained teams 

which are using their own training methods. 

The developers of NERO have now moved 

away from the program and are currently 

developing OpenNERO, based on the previous 

title this project aims to be used more for 

research and education in artificial intelligence 

rather than being a strategy video game. 

 

Experiments and results: 

 

 

For further understanding the technology of NeuroEvolution, a set of experiments were conducted to 

evaluate the evolution of an MLP Controller acting as an agent in the popular game, Space Invaders. 

To adapt the controller to compute in the application and to complete the experiments specified 

previously, modifications were made to the MLP controller: to compute with the input being the 

representation of the game grid using 1-to-N coding, modified the MLP to compute with the 

application using the number of hidden nodes, modified the output selection of the MLP using fitness 

measure, mutation rates, number of generations and the population size. In Figure 11 there are the 

modified values in the application with a short description of how they compute and range they will 

use in the experiments.  For the research into NeuroEvolution, five experiments were conducted using 

Figure 8: Screenshot of NERO in action (Willis, 2006) 

Figure 10: Screenshot from the Space Invaders game being used 



different values for the MLP controller and viewport dimensions in each experiment, each experiment 

will be tested in three different levels, for variation in results. 

Setting Name Range Parameter Function 

Viewport Dimensions   

viewWidth 5- 10 This parameter decides the width of the grid 

used as the input for the MLP Controller, the 

width will combine with the grid height and the 

numberCategories in the numCells calculation. 

viewHeight 5 - 10 This parameter decides the height of the grid 

used as the input for the MLP Controller, the 

grid follows the player. This parameter is used 

in the numCells calculation. 

numberCategories 4 This parameter is used for the different cell 

options in the application, for example, Alien, 

Missile, Obstacle, Empty, Left Window and 

Right Window. 

numCells 144 - 324 numCells is the calculation result of 

(ViewWidth * numberCategories) * 

viewHeight, this parameter is used in 1-to-N 

coding. 

MLP Topology   

numberInputNodes 144 - 324 This setting provides information from the 

viewport dimensions to be calculate in the 

hidden layer of the MLP Controller. 

numberHiddenNodes 10 - 200 numberHiddenNodes takes in the input and 

calculates an output using an activation 

function. 

numberOutputNodes 5 - 100 The values of the numberOutputNodes are the 

inputs calculated with the hidden layer, the 

outputs are used by the agent in the game. 

Activation Function   

Sigmoid Function N/A Sigmoid is the activation function used in the 

MLP Controller, this function limits the output 

to have a range between 0 and 1. 

Evolution Parameters   

populationSize  20 This parameter uses mutationMagnitude and 

mutationProbability to calculate a value used by 

the MLP controller. 

numberGenerations  10 The MLP controller will evolve the same 

amount of times as the value of this parameter. 

numberElite  5 - 10 This parameter is used when removing this 

parameters value from population size to 

calculate a value used in the Controller. 

mutationMagnitude  10 - 100 This parameter is used in the MLP Controller to 

calculate movement alongside 

mutationProbability. 

mutationProbability  10 - 100 This parameter is used in the MLP Controller to 

calculate movement alongside 

mutationMagnitude. 

 

The activation used in our MLP Controller for our experiments is known as the Sigmoid function, this 

activation function, known to have an “S”-shaped curve, also known as a sigmoid curve, the Sigmoid 

function is known to be used when using 1-to-N coding. The function limits the output results of the 

MLP controller to either 0 or 1, these are used in the 1-to-N coding representation in which the 

controller is used. For the output representation of my controller, I choose to use 1-to-N coding, this 

Figure 11: Parameters Used Table 



representation uses the Sigmoid activation outputs to then be further used for the controller’s actions. 

When modifying the MLP Controller, there was the option to modify the number of categories used in 

the controller, these categories are used in the numCells calculation for the grid of the AI agent. When 

modifying this parameter, the controller used four categories in the MLP Controllers, with these 

categories in place the agent was able to recognise the grid boundaries, aliens, obstacles, and empty 

tiles. The final modifications completed before experiments was modifying the scoring of the game, 

there was a lot of creative freedom here and alternative concepts of scoring were investigated when 

conducting the experiments. 

 

Experiment One 
For the first experiment to investigate 

the implementation of an MLP 

controller acting as an agent in the 

application known as Space Invaders, 

the controller was assigned low values 

to each of the parameters including the 

viewport dimensions. The decision for 

low values for this experiment was to 

compare the MLP controller using low 

values for all parameters including 

viewport dimensions compared to the 

MLP controller, using the same 

parameters except viewport dimensions 

where there will be an increase of value 

for the viewport values in experiment 

two. The results presented in Figure 12 

showed a steady increase for fitness 

measure until generation four where the value started to decrease a small amount each generation 

during the evolution. Population stats shown in Figure 12 increased and decreased multiple times 

during the evolution process. When the MLP controller was presented to the three chosen levels for 

next stage of the experiment, the controller was successful in completing all levels used in the 

experiment, the most successful level of the experiment being level two, the level was completed in 

388 timesteps and the overall score for the controller was 45. Overall, this was a successful 

experiment to show how the controller would compute using the lowest values for all parameters 

including the parameters for the viewport. 
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Figure 12: Experiment One 



Experiment Two 
This experiment will be used to 

compare the performance of the MLP 

controller using low values for all 

parameters except the viewport which 

will use high values, this experiment 

will be used to compare the difference 

in results when the MLP controller is 

using a high value viewport compared 

to a low value viewport. The results 

presented in Figure 13 showed a steady 

increase in value for the fitness 

measure except in generation five, in 

this generation the value increased by a 

large amount but in the continuing 

generations the value resumed the 

steady increase. After reviewing the 

population stats for this experiment, the 

value did not increase by a large 

amount but had a few high values increases in generations three and six. When the MLP controller 

was presented to the three chosen levels for next stage of the experiment, the controller was successful 

in completing all levels used in the experiment, the most successful level of the experiment being 

level three, the level was completed in 361 timesteps and the controller’s overall score was 41.  

 

Experiment Three 
This experiment will be used to 

compare the performance of the MLP 

controller using high values for the 

controller’s parameters and lower 

values for viewport, this experiment 

will be used to compare the difference 

in results when the MLP controller is 

using a low value viewport compared to 

a high value viewport. The results 

presented in Figure 14 showed a steady 

increase in population stats, at 

generation eight the value increased by 

a high amount but after that continued 

at a steady amount. The fitness measure 

increased at generation four but then 

jumped in value, after this drop the 

fitness measure began to increase again 

until the generation where it decreased 

in value again. in value for population stats compared to fitness measure which continued to decrease 

slightly. When the MLP controller was presented to the three chosen levels for next stage of the 

experiment, the controller was successful in every level used except level one where the MLP 

controller was destroyed by the enemy AI, the most successful level was the level three, this level was 

completed in 434 timesteps and the overall score for the controller was 42.  Overall, this was a 

10.85

18.65
22.22 22.72 22.75

33.57532.175
36.8 39.12541.5 43

46

58

44

53
57 57.5

47

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

GENERATIONS

EXPERIMENT THREE

Population Fitness Measure

29.75 31.5

38.825

32.15 32.9

40.9
36.125

39.1
36.025

45.5
48.5

51.5 50.5 49

56.5

49.5
54

51

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

GENERATIONS

EXPERIMENT TWO

Population Fitness Measure

Figure 13: Experiment Two 

Figure 14: Experiment Four 



successful experiment to show how the controller would compute using the highest values for all 

parameters except the viewport which used low values. 

 

Experiment Four 
This experiment will be used to 

compare the performance of the MLP 

controller using high values for the 

controller’s parameters and viewport 

dimensions compared to the previous, 

experiment three where that evolved 

controller used high values for the 

parameters except the viewport which 

used low values for the dimensions. The 

results presented in Figure 15 showed a 

steady increase in value for both the 

population stats and the fitness measure, 

there was a slight drop at generation 

eight for both values but there was an 

increase in value for population stats 

compared to fitness measure which 

continued to decrease slightly. When 

the MLP controller was presented to the 

three chosen levels for next stage of the experiment, the controller was successful in completing each 

level without being destroyed by the enemy AI, the most successful level being level one where the 

amount of timesteps the level was completed in was 430 and the controllers overall score was 49. 

Overall, this was a successful experiment to show how the controller would compute using the highest 

values for all parameters including the viewport. 

 

Experiment Five 
For the fifth and final experiment, the 

controller will be assigning the average 

value between the high and low values 

previously used as values for this 

experiment. The decision to use the 

average of values of the high and low 

values used previously was to analysis 

how the MLP controller would function 

using the average values compared to 

the lowest and highest values used 

previously. The results presented in 

Figure 16 showed a steady increase of 

population stats value each generation 

compared to the fitness measure where 

this value had a slight drop in the 

middle and end of the evolution 

process. When the MLP controller was 

presented to the three chosen levels for next stage of the experiment, the controller was successful in 

completing each level without being destroyed by the enemy AI, the most successful level being level 
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Figure 16: Experiment Five 



three where the amount of timesteps the level was completed in was 361 and the controllers score was 

41. Overall, this was a successful experiment to show how the controller would compute using the 

average values of the previous experiments. 

 

Discussion: 
All results obtained were successful in completing the evolution of generations and obtaining data on 

the population stats and fitness measure for all generations, with these experiments completed 

successfully there is a clear indication that after each generation when evolving, all experiments 

increased value for both measures when comparing their values at the start and end of the evolution 

process. After completing the five experiments, there were not enough values for each of the 

experiments to determine positive or negative changes when analysing the results for comparisons 

with the experiments conducted, due to the lack of results to use for analysis, the experiments were 

conducted again using ten generations instead of the previous set which used only five generations in 

each evolution. One of the key factors from analysing all the levels completed for each experiment 

was that three out of the five experiments conducted completed level three compared to the rest of the 

levels used in the experiments, these experiments being; experiment two, three and five. After 

reviewing the three experiments which all had level three as their best score, there was not a common 

factor as each experiment used different values for the controller and the viewport. 

 

After analysing the results there was one unusual factor which occurred in experiment three, this 

factor being that the controller failed to complete level one after the evolution process, this factor was 

unusual because in all the other experiments the controllers were able to complete the level and defeat 

the enemy AI. From analysing the unusual result further, experiment three used high values for all 

parameters except the viewport in which low values were used, the result of this could be the reason 

for level failure, the high values for the MLP parameters could not compute with the small grid size of 

the viewport. After further analysing the results the lowest average timesteps out of all experiments 

was experiment two, this experiment used low values for all parameters except viewport which used 

high value parameters. After further analysis, the fitness measure was at its highest value in 

experiments five and one with a value of 53. The population stats were highest in value in experiment 

four with a value of 40.7, experiment three was close behind with a value of 39.125 

 

After analysing the results, both the population stats and the fitness measure for experiment two did 

not increase in value in comparison to the rest of the experiments after the evolution process, this 

experiment in particular was the experiment where low values were used for all parameters except the 

viewport in which high values were used, this factor leads to the idea of the MLP controller having a 

large amount of the viewport accessible to use but low values in input, the controller was not 

successful in using the viewport to its advantage. After further analysis, experiment four seemed to 

increase in both data measures the highest compared to the other experiments which were conducted, 

both data measures increased in high value after each generation except generation eight, this 

generation was where both data measures were at their highest, after generation eight, the data 

measures began to decrease by a low value but managed to still have a good value for each data 

measure, this experiment used high values for all parameters for MLP controller except the viewport 

which used low values.  Experiment five was close to be the most successful evolution compared to 

experiment four, this experiment used the average values of the highest and lowest values used in the 

previous experiments so far. 

 



After reviewing the results and finding the experiments four and five to have the best results after the 

evolution, the experiments showed that the higher the parameter values are for the MLP controller, the 

greater the results. The viewport dimensions in these experiments did not use the highest value 

compared to the MLP controller parameters which used the highest values and the average values of 

the previous highest and lowest values used. One of MLP’s weaknesses is setting parameters as this 

process is known more as an art rather than a science, this method of setting parameter values was 

used highly during all the experiments. After all the experiments were conducted and reviewing their 

results, the findings prove that using the NeuroEvolution technique for an AI agent in Space Invaders 

is a good example of AI being applied to video games. The idea of AI being applied to video games in 

the way this agent has been in the Space Invaders application has been used for several other games, 

these games being; Chess, Pong and several other games to conduct how AI can be used to play a 

video game. Overall NeuroEvolution has shown how an AI agent can be applied to a video game and 

outperform a biological player using generation evolution, the process of picking the fittest of each 

generation, breeding them together and adding random mutations very closely matches the process of 

biological evolution which took single cell organisms and produced intelligent humans (Brockman, 

2016), that is the power of neuro-evolution. 
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Appendix: 
 

 



Experiment Results: 

 

Key: 

Red = The Controller failed to complete the level 

Yellow = The Controllers best score compared to the other levels used in the experiment. 

 

 

Experiment 

Number 

Fitness 

Measure   

Population 

Stats 

Level 1 Level 2 Level 3 Best 

1 

 

 

42 

45 

44.5 

55 

54.5 

55.5 

54.5 

53.5 

53 

22.25 

23.675 

26.95 

37.5 

37.925 

32.1 

41.3 

33.6 

35.975 

597 

 

64 388 

 

45 

 

449 42 388 45 

2 

 

 

45.5 

48.5 

51.5 

50.5 

49 

56.5 

49.5 

54 

51 

29.75 

31.5 

38.825 

32.15 

32.9 

40.9 

36.125 

39.1 

36.025 

409 59 608 51 361 41 361 41 

3 

 

 

41.5 

43 

46 

58 

44 

53 

57 

57.5 

47 

10.85 

18.65 

22.22 

22.72 

22.75 

33.375 

31.175 

36.8 

39.125 

855 53 633 49 434 42 434 42 

4 

 

 

39.5 

46 

45 

46.5 

48.5 

53 

59 

55.5 

52.5 

8.6 

18.2 

24.65 

25.325 

32.1 

37.725 

42.6 

36.85 

40.7 

430 49 

 

837 51 

 

835 55 

 

430 49 

 

5 

 

 

 

37.5 

43 

43 

53.5 

53 

51 

59 

56 

53 

9.575 

20.025 

21 

30.825 

32.05 

34.1 

35.625 

32.275 

34.5 

565 61 555 48 361 41 

 

361 41 


